스터디 진행 방식
논문 읽고 구현해오기 → 발표 → 코드리뷰 → 구현 업로드 → 논문 소감 공유
발표 순서
박준희(휴가) → 유창우 → 서병준 → Eddie → 김관영 → 이지환 → 유하린
발표자 (읽을 논문)
구현하기 → 아래 Github 레포에 업로드
https://github.com/MLB-Papers/paper-impl
읽어야하는 논문들
4강 CNN 논문
- LeCun et al., 1998. Gradient-based learning applied to document recognition]
- [Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]
- [He et al., 2015. Deep residual networks for image recognition]
- [Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]
- [Lin et al., 2013. Network in network]
- [Szegedy et al. 2014. Going deeper with convolutions]
- [Howard et al. 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]
- [Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]
- [Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]
- [Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]
- [Redmon et al., 2015, You Only Look Once: Unified real-time object detection]
- [Girshik et. al, 2013, Rich feature hierarchies for accurate object detection and semantic segmentation]